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a b s t r a c t

Finite mixture models are widely used in a variety of statistical applications. However,
the classical normal mixture model with maximum likelihood estimation is prone to the
presence of only a few severe outliers. We propose a robust mixture modeling approach
using a mean-shift formulation coupled with nonconvex sparsity-inducing penalization,
to conduct simultaneous outlier detection and robust parameter estimation. An efficient
iterative thresholding-embedded EM algorithm is developed to maximize the penalized
log-likelihood. The efficacy of our proposed approach is demonstrated via simulation
studies and a real application on Acidity data analysis.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays finite mixture distributions are increasingly important in modeling a variety of random phenomena
(see Everitt and Hand, 1981; Titterington et al., 1985; McLachlan and Basford, 1988; Lindsay, 1995; Böhning, 1999). The
m-component finite normal mixture distribution has probability density

f (y; θ) =
m
i=1

πiφ(y;µi, σ
2
i ), (1.1)

where θ = (π1, µ1, σ1; . . . ;πm, µm, σm)T collects all the unknown parameters, φ(·;µ, σ 2) denotes the density function
of N(µ, σ 2), and πj is the proportion of jth subpopulation with

m
j=1 πj = 1. Given observations (y1, . . . , yn) from model

(1.1), the maximum likelihood estimator (MLE) of θ is given by,

θ̂mle = argmax
θ

n
i=1

log


m
j=1

πjφ(yi;µj, σ
2
j )


, (1.2)

which does not have an explicit form and is usually calculated by the EM algorithm (Dempster et al., 1977).
TheMLE based on the normality assumption possessesmany desirable properties such as asymptotic efficiency, however,

the method is not robust and both parameter estimation and inference can fail miserably in the presence of outliers. Our
focus in this paper is hence on robust estimation and accurate outlier detection in mixture model. For the simpler problem
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of estimating of a single location, many robust methods have been proposed, including the M-estimator (Huber, 1981),
the least median of squares (LMS) estimator (Siegel, 1982), the least trimmed squares (LTS) estimator (Rousseeuw, 1983),
the S-estimates (Rousseeuw and Yohai, 1984), the MM-estimator (Yohai, 1987), and the weighted least squares estimator
(REWLSE) (Gervini and Yohai, 2002). In contrast, there is much less research on robust estimation of the mixture model,
in part because it is not straightforward to replace the log-likelihood in (1.2) by a robust criterion similar to M-estimation.
Peel and McLachlan (2000) proposed a robust mixture modeling using t distribution. Markatou (2000) proposed using a
weighted likelihood for each data point to robustify the estimation procedure for mixture models. Fujisawa and Eguchi
(2005) proposed a robust estimation method in normal mixture model using a modified likelihood function. Neykov et al.
(2007) proposed robust fitting of mixtures using the trimmed likelihood. Other related robust methods on mixture models
include Hennig (2002, 2003), Shen et al. (2004), Bai et al. (2012), Bashir and Carter (2012), Yao et al. (2014), and Song et al.
(2014).

We propose a new robust mixture modeling approach based on a mean-shift model formulation coupled with
penalization, which achieves simultaneous outlier detection and robust parameter estimation. A case-specific mean-shift
parameter vector is added to the mean structure of the mixture model, and it is assumed to be sparse for capturing the rare
but possibly severe outlying effects caused by the potential outliers. When the mixture components are assumed to have
equal variances, ourmethod directly extends the robust linear regression approaches proposed by She and Owen (2011) and
Lee et al. (2012). However, even in this case the optimization of the penalizedmixture log-likelihood is not trivial, especially
for the SCAD penalty (Fan and Li, 2001). For the general case of unequal component variances, the variance heterogeneity
of different components complicates the declaration and detection of the outliers, and we thus propose a general scale-free
and case-specific mean-shift formulation to solve the general problem.

2. Robust mixture model via mean-shift penalization

In this section, we introduce the proposed robust mixture modeling approach via mean-shift penalization (RMM). To
focus on the main idea, we restrict our attention on the normal mixture model. The proposed approach can be readily
extended to other mixture models, such as gamma mixture and logistic mixture. Due to the inherent difference between
the case of equal component variances and the case of unequal component variances, we shall discuss two cases separately.

2.1. RMM for equal component variances

Assume the mixture components have equal variances, i.e., σ 2
1 = · · · = σ 2

m = σ 2. The proposed robust mixture model
with amean-shift parameterization is to assume that the observations (y1, . . . , yn) come from the followingmixture density

f (yi; θ, γi) =

m
j=1

πjφ(yi − γi;µj, σ
2), i = 1, . . . , n, (2.1)

where θ = (π1, µ1, . . . , πm, µm, σ )T , and γi is the mean-shift parameter for the ith observation. Apparently, without any
constraints, the addition of the mean-shift parameters results in an overly parameterized model. The key here is to assume
that the vector γ = (γ1, . . . , γn) is sparse, i.e., γi is zero when the ith data point is a normal observation with any of the
m mixture components, and only when the ith observation is an outlier, γi becomes nonzero to capture the outlying effect.
Therefore, the sparse estimation of γ provides a direct way to accommodate and identify outliers.

Due to the sparsity assumption of γ , we propose to maximize the following penalized log-likelihood criterion to conduct
model estimation and outlier detection,

pl1(θ, γ) = l1(θ, γ)−

n
i=1

1
wi

Pλ(|γi|) (2.2)

where l1(θ, γ) =
n

i=1 log
m

j=1 πjφ(yi − γi;µj, σ
2)


, wis are some prespecified weights, Pλ(·) is some penalty function

used to induce the sparsity in γ , and λ is a tuning parameter controlling the number of outliers, i.e., the number of nonzero
γi. In practice, wis can be chosen to reflect any available prior information about how likely that yis are outliers; to focus
on the main idea, here we mainly consider w1 = w2 = · · · = wn = w, and discuss the choice of w for different penalty
functions.

Some commonly used sparsity-inducing penalty functions include the ℓ1 penalty (Donoho and Johnstone, 1994a;
Tibshirani, 1996a,b)

Pλ(γ ) = λ|γ |, (2.3)

the ℓ0 penalty (Antoniadis, 1997)

Pλ(γ ) =
λ2

2
I(γ ≠ 0), (2.4)
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and the SCAD penalty (Fan and Li, 2001)

Pλ(γ ) =


λ|γ | if |γ | ≤ λ,

−


γ 2
− 2aλ|γ | + λ2

2(a− 1)


if λ < |γ | ≤ aλ,

(a+ 1)λ2

2
if |γ | > aλ,

(2.5)

where a is a constant usually set to be 3.7. In penalized estimation, each of the above penalty forms corresponds to a
thresholding rule, e.g., ℓ1 penalization corresponds to a soft-thresholding rule, and ℓ0 penalization corresponds to a hard-
thresholding rule. It is also known that the convex ℓ1 penalization often leads to over-selection and substantial bias in
estimation. Indeed, as shown by She and Owen (2011) in the context of linear regression, ℓ1 penalization in mean-shift
model has connections with M-estimation using Huber’s loss and usually leads to poor performance in outlier detection.
Similar phenomenon is also observed in our extensive numerical studies. However, if there are no high leverage outliers,
the ℓ1 penalty works well and succeeds to detect the outliers, see for examples, Dalalyan and Keriven (2012), Dalalyan and
Chen (2012) and Nguyen and Tran (2013).

We propose a thresholding embedded EM algorithm to maximize the objective function (2.2). Let

zij =

1 if the ith observation is from the jth component,
0 otherwise,

and zi = (zi1, . . . , zim). The complete penalized log-likelihood function based on the complete data {(yi, zi), i = 1, 2, . . . , n}
is

plc1(θ, γ) =

n
i=1

m
j=1

zij log

πjφ(yi − γi;µj, σ

2)

−

n
i=1

1
w

Pλ(|γi|). (2.6)

Based on the construction of the EM algorithm, in the E step, given the current estimate θ(k) and γ (k) at the kth iteration, we
need to find the conditional expectation of the complete penalized log-likelihood function (2.6), i.e., E{plc1(θ, γ) | θ(k), γ (k)

}.
The problem simplifies to the calculation of E(zij|yi; θ(k), γ (k)),

p(k+1)
ij = E(zij | yi; θ(k), γ (k)) =

π
(k)
j φ(yi − γ

(k)
i ;µ

(k)
j , σ 2(k)

)

m
j=1

π
(k)
j φ(yi − γ

(k)
i ;µ

(k)
j , σ 2(k)

)

.

In the M step, we then update (θ, γ) by maximizing E{plc1(θ, γ) | θ(k), γ (k)
}. There is no explicit solution, except for the πjs,

π
(k+1)
j =

n
i=1

p(k+1)
ij

n
.

We propose to alternatingly update {σ , µj, j = 1, . . . ,m} and γ until convergence to get {µ(k+1)
j , j = 1, . . . ,m;

σ (k+1), γ (k+1)
}. Given γ , µjs and σ are updated by

µj ←

n
i=1

p(k+1)
ij (yi − γi)

n
i=1

p(k+1)
ij

, σ 2
←

m
j=1

n
i=1

p(k+1)
ij (yi − γi − µj)

2

n
.

Given µjs and σ , γ is updated by maximizing
n

i=1

m
j=1

p(k+1)
ij logφ(yi − γi;µj, σ

2)−

n
i=1

1
w

Pλ(|γi|),

which is equivalently to minimizing

1
2


γi −

m
j=1

p(k+1)
ij (yi − µj)

2

+
1
w

σ 2Pλ (|γi|) , (2.7)

separately for each γi, i = 1, . . . , n. A detailed derivation is presented in the Appendix. For either the ℓ1 or the ℓ0 penalty,
w−1σ 2Pλ (|γi|) = σPλ∗ (|γi|), where λ∗ = σ

√
w
λ. Therefore, if λ is chosen data adaptively, we can simply set w = 1 for these

penalties. However, for the SCAD penalty, such property does not hold and the solution may be affected nonlinearly by the
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ratio σ 2/w. In order to mimic the unscaled SCAD and use the same a value as suggested by Fan and Li (2001), we need to
make sure that σ 2/w is close to 1. Therefore, we propose to set w = σ̂ 2 for SCAD penalty, where σ̂ 2 is a robust estimate of
σ 2 such as the estimate from the trimmed likelihood estimation (Neykov et al., 2007) or the estimator using the ℓ0 penalty
assuming w = 1.

As shown in Proposition 1, when the ℓ1 penalty is used, (2.7) is minimized by a soft thresholding rule, and when the ℓ0
penalty is used, (2.7) is minimized by a hard thresholding rule. When the SCAD penalty is used, however, the problem is
solved by a modified SCAD thresholding rule, which is shown in Lemma 1.

Proposition 1. Let ξi =
m

j=1 p
(k+1)
ij (yi −µj). Let w = 1 in (2.7). When the penalty function in (2.7) is the ℓ1 penalty (2.8), the

minimizer of (2.7) is given by

γ̂i = Θsoft(ξi; λ, σ ) = sgn(ξi) (|ξi| − σλ)+ , (2.8)

where a+ = max(a, 0). When the penalty function in (2.7) is the ℓ0 penalty (2.9), the minimizer of (2.7) is given by

γ̂i = Θhard(ξi; λ, σ ) = ξiI(|ξi| > σλ), (2.9)

where I(·) denotes the indicator function.

Lemma 1. Let ξi =
m

j=1 p
(k+1)
ij (yi − µj). Let w = σ̂ 2 in (2.7), a robust estimator of σ 2. When the penalty function in (2.7) is

the SCAD penalty (2.5), the minimizer of (2.7) is given by
1. when σ 2/σ̂ 2 < a− 1,

γ̂i = Θscad(ξi; λ, σ ) =


sgn(ξi)


|ξi| −

σ 2λ

σ̂ 2


+

, if |ξi| ≤ λ+
σ 2λ

σ̂ 2
,

σ̂ 2

σ 2 (a− 1)ξi − sgn(ξi)aλ
σ̂ 2

σ 2 (a− 1)− 1
, if λ+

σ 2λ

σ̂ 2
< |ξi| ≤ aλ,

ξi, if |ξi| > aλ.

(2.10)

2. when a− 1 ≤ σ 2/σ̂ 2
≤ a+ 1,

γ̂i = Θscad(ξi; λ, σ ) =


sgn(ξi)


|ξi| −

σ 2λ

σ̂ 2


+

, if |ξi| ≤
a+ 1+ σ 2

σ̂ 2

2
λ,

ξi, if |ξi| >
a+ 1+ σ 2

σ̂ 2

2
λ.

(2.11)

3. when σ 2/σ̂ 2 > a+ 1,

γ̂i = Θscad(ξi; λ, σ ) = ξiI(|ξi| >


σ 2(a+ 1)

σ̂ 2
λ). (2.12)

The detailed EM algorithm is summarized in Algorithm 1. For simplicity, we have used Θ(ξi; λ, σ ) to denote a general
thresholding rule determined by the adopted penalty function, e.g., the modified SCAD thresholding rule Θscad(ξi; λ, σ )
defined in Lemma 1. The convergence property of the proposed algorithm is summarized in Theorem 2.1, which follows
directly from the property of the EM algorithm, and hence its proof is omitted.

Theorem 2.1. Each iteration of E step and M step of Algorithm 1 monotonically non-decreases the penalized log-likelihood (2.2),
i.e., pl1(θ(k+1), γ (k+1)) ≥ pl1(θ(k), γ (k)), for all k ≥ 0.

2.2. RMM for unequal component variances

When the component variances are unequal, the naivemean-shift model (2.1) cannot be directly applied, due to the scale
difference in the mixture components. To illustrate further, suppose the standard deviation in the first component is 1 and
the standard deviation in the second component is 4. If someweighted residual ξi, defined in Proposition 1, equals to 5, then
the ith observation is considered as an outlier if it is from the first component but should not be regarded as an outlier if it
belongs to the second component. This suggests that the declaration of outliers in a mixture model shall take into account
both the centers and the variabilities of all the components, i.e., an observation is considered as an outlier in the mixture
model only if it is far away from all the component centers judged by their own component variabilities.

We propose a general scale-free mean-shift model to incorporate the information on component variability,

f (yi; θ, γi) =

m
j=1

πjφ(yi − γiσj;µj, σ
2
j ), i = 1, . . . , n, (2.13)
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Algorithm 1 Thresholding Embedded EM Algorithm for Equal Variances Case

Initialize θ(0) and γ (0). Set k← 0.
repeat

E-Step: Compute the classification probabilities

p(k+1)
ij = E(zij|yi; θ(k)) =

π
(k)
j φ(yi − γ

(k)
i ;µ

(k)
j , σ 2(k)

)m
j=1 π

(k)
j φ(yi − γ

(k)
i ;µ

(k)
j , σ 2(k)

)
.

M-Step: Update (θ, γ) by the following two steps:

1. π
(k+1)
j =

n
i=1 p

(k+1)
ij /n, j = 1, . . . ,m.

2. Iterating the following steps until convergence to obtain {µ(k+1)
j , j = 1, . . . ,m; σ 2(k+1)

, γ (k+1)
}:

(2.a) γi ← Θ(ξi; λ, σ ), i = 1, . . . , n, where ξi =

m
j=1

p(k+1)
ij (yi − µj),

(2.b) µj ←

n
i=1 p

(k+1)
ij (yi − γi)n
i=1 p

(k+1)
ij

, j = 1, . . . ,m,

(2.c) σ 2
←

m
j=1

n
i=1 p

(k+1)
ij (yi − γi − µj)

2

n
.

k← k+ 1.
until convergence.

wherewith someabuse of notation, θ is redefined as θ = (π1, µ1, σ1, . . . , πm, µm, σm)T . Given observations (y1, y2, . . . , yn),
we estimate the parameters θ and γ by maximizing the following penalized log-likelihood function:

pl2(θ, γ) = l2(θ, γ)−

n
i=1

1
wi

Pλ(|γi|), (2.14)

where l2(θ, γ) =
n

i=1 log
m

j=1 πjφ(yi − γiσj;µj, σ
2
j )


. Since the γis in (2.14) are scale free, we can set w1 = w2 = · · · =

wn = 1 when no prior information is available.
We again propose a thresholding embedded EM algorithm to maximize (2.14). As the construction is similar to the case

of equal variances, we omit the details of its derivation. The proposed EM algorithm is presented in Algorithm 2, and here
we shall briefly remark the main changes. Unlike in the case of equal variances, the update of σ 2

j in (2.17), with other
parameters held fixed, does not have explicit solution in general and requires some numerical algorithm to solve, e.g., the
Newton–Raphson method; as the problem is one dimensional, the computation remains very fast. In the case of unequal
variances, the problem of updating γ , with other parameters held fixed, is still separable in each γi, i.e., at the (k + 1)th
iteration,

γ̂i = argmin
γi


−

m
j=1

p(k+1)
ij logφ(yi − γiσj;µj, σ

2
j )+ Pλ(|γi|)


.

It can be readily shown that the solution is given by simple thresholding rules. In particular, using the ℓ1 penalty leads to
γ̂i = Θsoft(ξi; λ, 1) and using the ℓ0 penalty leads to γ̂i = Θhard(ξi; λ, 1), where Θsoft and Θhard are defined in Proposition 1,
and here in the case of unequal variance, ξi becomes

ξi =

m
j=1

p(k+1)
ij

σj
(yi − µj).

As the γis become scale free, the thresholding rule for solving SCAD becomes much simpler, and it is given by (2.10) when
setting the quantity σ 2/σ̂ 2

= 1, i.e.,

γ̂i = ΘSCAD(ξi; λ, 1) =


sgn(ξi)(|ξi| − λ)+, if |ξi| ≤ 2λ,
(a− 1)ξi − sgn(ξi)aλ

a− 2
, if 2λ < |ξi| ≤ aλ,

ξi, if |ξi| > aλ.
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Algorithm 2 Thresholding Embedded EM Algorithm for Unequal Variances Case

Initialize θ(0) and γ (0). Set k← 0.
repeat

E-Step: Compute the classification probabilities

p(k+1)
ij = E(zij|yi; θ(k)) =

π
(k)
j φ(yi − γ

(k)
i σ

(k)
j ;µ

(k)
j , σ 2(k)

j )m
j=1 π

(k)
j φ(yi − γ

(k)
i σ

(k)
j ;µ

(k)
j , σ 2(k)

j )
.

M-Step: Update (θ, γ) by the following two steps:

1.

π
(k+1)
j =

n
i=1 p

(k+1)
ij

n
, j = 1, . . . ,m.

2. Iterating the following steps until convergence to obtain {µ(k+1)
j , σ 2(k+1)

j , j = 1, . . . ,m, γ (k+1)
}:

(2.a) γi ← Θ(ξi; λ, 1), where ξi =

m
j=1

p(k+1)
ij (yi − µj)/σj, (2.15)

(2.b) µj ←

n
i=1 p

(k+1)
ij (yi − γiσj)n
i=1 p

(k+1)
ij

, (2.16)

(2.c) σ 2
j ← argmax

σj

n
i=1

p(k+1)
ij logφ(yi − γiσj;µj, σ

2
j ). (2.17)

k← k+ 1.
until convergence

Similar to Theorem 2.1, it is easy to check that the monotone non-decreasing property remains hold for Algorithm 2.
We note that in both algorithms, we have used an iterative algorithm aiming to fully maximize the expected complete log-
likelihood under penalization. It can be seen that in this blockwise coordinate descent algorithm, each loop of (2.a)–(2.c)
monotonically non-decreases the objective function. Therefore, an alternative strategy is to run (2.a)–(2.c) only a few
times or even just once in each M-step; the resulting generalized EM algorithm continues to possess the desirable
convergence property. Based on our limited experience, however, this method generally does not lead to significant saving
in computation, because the iterations in the M-step only involve simple operations and partially solving M-step may slow
down the overall convergence. Nevertheless, it is worthwhile to point out this strategy, as it can be potentially useful when
more complicated penalization methods are required.

2.3. Tuning parameter selection

When using robust estimation or outlier detection methods, it is usually required to choose a ‘‘threshold’’ value, e.g., the
percentage of observations to eliminate, or the cutoff to declare extreme residuals. In our method, selecting ‘‘threshold’’
becomes the tuning parameter selection problem in penalized regression (2.2) and (2.14). As such, many well-developed
methodologies including cross validation and information criterion based approaches are all applicable, and the turning
parameter λ can be selected in an objective way, based on predictive power of the model or the balance between model
goodness of fit and complexity. Here, we provide a data adaptive way to select λ based on a Bayesian information criterion
(BIC), due to its computation efficiency and proven superior performance on variable selection,

BIC(λ) = −l∗j (λ)+ log(n)df(λ), (2.18)

where j = 1 or 2, l∗j (λ) = lj(θ̂(λ), γ̂(λ)) is the mixture log-likelihood evaluated at the estimator (θ̂(λ), γ̂(λ)) obtained
by maximizing the penalized likelihood criterion (2.2) or (2.14) with λ being the tuning parameter, and df(λ) is the model
degrees of freedomwhich is estimated by the sumof the number of nonzero γ values and the number ofmixture component
parameters. In practice, the optimal tuning parameter λ is chosen by minimizing BIC(λ) over a grid of 100 λ values, equally
spaced on the log scale between λmin and λmax, where λmax is some large value of λ resulting in all zero values in γ̂ ,
corresponding to the case of no outlier, and λmin is some small value of λ resulting in roughly 40% nonzero values in γ̂ ,
since in reality the proportion of outliers is usually quite small. Themodels with various λ values are fitted sequentially. The
previous solution is used as the initial value for fitting the next model to speed up the computation. As such, our proposed
method is able to search conveniently over a whole spectrum of possible models.



C. Yu et al. / Journal of Statistical Planning and Inference 164 (2015) 27–38 33

In mixture model, it is a foremost task to determine the number of mixture componentm. The problemmay be resolved
based on prior knowledge of the underlying data generation process. In many applications where no prior information is
available, we suggest to conduct the penalized mixture model analysis with a few plausiblem values, and use the proposed
BIC criterion to select both the number of componentm and the amount of penalization λ.

3. Simulation

3.1. Setups

We conduct simulation studies to investigate the effectiveness of the proposed approach and compare it with several
existing methods. We consider both the case of equal variances and the case of unequal variances. In each setup to be
elaborated below, we first generate independent observations from a normal mixture distribution; a few outliers are then
created by adding random mean-shift to some of the observations. The sample size is set to n = 200, and we consider two
proportions of outliers, i.e., pO = 5% and pO = 10%. The number of replicates is 200 for each simulation setting.

Example 1: The samples (y1, y2, . . . , yn) are generated from model (2.1) with π1 = 0.3, µ1 = 0, π2 = 0.7, µ2 = 8, and
σ = 1. That is, the size of the first component n1 is generated from a binomial distributionwith n1 ∼ Bin(n, p =
0.3), and consequently the size of the second component is given by n2 = n−n1. To create 100pO% outliers, we
randomly choose 3npO/10 many observations from component 1, and each of them is added a random mean
shift γ ∼ Unif([−5,−7]). Similarly 7npO/10 outliers are created by adding randommean shift γ ∼ Unif([5, 7])
to observations from component 2.

Example 2: The samples (y1, y2, . . . , yn) are generated from model (2.13) with π1 = 0.3, µ1 = 0, σ1 = 1, π2 = 0.7,
µ2 = 8, and σ2 = 2. All other settings are the same as in Example 1, except that when generating outliers, we
add an amount Unif([−5σ1,−7σ1]) to observations from component 1 and Unif([5σ2, 7σ2]) to observations
from component 2.

In the above simulation examples, the majority of data points form two well-separated clusters. There are very few
extreme observations (5% or 10%), which are far away from both the cluster centers. As such, it is appropriate to model
these anomaly observations as outliers in a two-component mixture model.

3.2. Methods and evaluation metrics

Weuse our proposed RMMapproaches with several different penalty forms including ℓ0, ℓ1 and SCAD penalties, denoted
as Soft, Hard and SCAD, respectively. For each penalty, our approach efficiently produces a solution path with varying
numbers of outliers. The optimal solution is selected by the BIC criterion. To investigate the performance of BIC and to
better understand the true potential of each penalization method, we also report an ‘‘oracle’’ estimator, which is defined
as the solution having the best outlier detection performance along the fitted solution path. When there are multiple such
solutions on the path, we choose the one gives the best parameter estimates. These oracle estimators are denoted as SoftO ,
HardO and SCADO . We note that the oracle estimators rely on the knowledge of the true parameter values, and thus they
are not feasible to compute in practice. Nevertheless, as we shall see below, they provide interesting information about the
behaviors of different penalty forms.We also compare our RMMapproach to the nonrobustmaximum likelihood estimation
method (MLE) and the robust trimmed likelihood estimation method (TLE) proposed by Neykov et al. (2007), with the
percentage of trimmed data α set to either 0.05 (TLE0.05) or 0.10 (TLE0.1). TLE methods require a cutoff value η to identify
extreme residuals; following Gervini and Yohai (2002), we set η = 2.5.

To evaluate the outlier detection performance, we report (1) the proportion of masking (M%), i.e., the fraction of
undetected outliers, (2) the proportion of swapping (S%), i.e., the fraction of good points labeled as outliers, and (3) the
joint detection rate (JD%), i.e., the proportion of simulations with 0 masking. Ideally, M%≈ 0%, S%≈ 0% and JD%≈ 100%. To
evaluate the performance of parameter estimation, we report both the mean squared errors (MSE) and the robust median
squared errors (MeSE) of the parameter estimates.

A very important usage of mixture model is for clustering. From the fitted mixture model, the Bayes classification rule
assigns the ith observation to cluster j such that j = argmaxk pik, where pik, k = 1, . . . ,m, are the set of cluster probabilities
for the ith observation directly produced from the EM algorithm.We thus compute the averagemisclassification rate (Mis%)
to evaluate the clustering performance of each method. We note that for mixture models, there are well-known label
switching issues (Celeux et al., 2000; Stephens, 2000; Yao and Lindsay, 2009; Yao, 2012a,b). Roughly speaking, the mixture
likelihood function is invariant to the permutation of the component labels, so that the component parameters are not
identifiablemarginally since they are exchangeable. As a consequence, the estimation results from different simulation runs
are not directly comparable, as the mixture components in each simulation run can be labeled arbitrarily. In our examples,
the component labels in each simulation are aligned to the reference label of the true parameter values, i.e., the labels are
chosen by minimizing the distance from the resulting parameter estimates to the true parameter values.
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Table 1
Simulation results for the case of equal variances with n = 200 and pO = 5%.

Hard HardO SCAD SCADO Soft SoftO TLE0.05 TLE0.10 MLE

M% 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.06 –
S% 0.27 0.02 0.99 0.03 0.42 0.03 1.04 3.34 –
JD% 100.00 100.00 100.00 100.00 100.00 100.00 99.44 99.44 –
Mis% 0.26 0.02 0.94 0.02 0.40 0.03 0.07 5.01 15.53
MeSE(π ) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002
MSE(π ) 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.030
MeSE(µ) 0.018 0.017 0.035 0.052 0.055 0.065 0.017 0.031 0.293
MSE(µ) 0.023 0.022 0.041 0.063 0.061 0.071 0.022 0.038 11.150
MeSE(σ ) 0.009 0.010 0.067 0.191 0.176 0.231 0.008 0.064 0.952
MSE(σ ) 0.016 0.016 0.088 0.191 0.198 0.242 0.012 0.071 25.478

3.3. Results

The simulation results are summarized in Tables 1–4. Not surprisingly, MLE fails in all the cases. This demonstrates that
robust mixture modeling is indeed needed in the presence of rare but severe outliers.

In case of equal variances, both Hard and SCAD perform very well, and their performance on outlier detection is very
similar to their oracle counterparts.While the Softmethodperformswell in outlier detectionwhen pO = 5%, its performance
becomes much worse when pO = 10% mainly due to masking. The observed nonrobustness of Soft is consistent with the
results in She and Owen (2011). In terms of parameter estimation, Hard and HardO perform the best among the RMM
methods. On the other hard, SCADO performs better than SoftO and they are slightly outperformed by SCAD and Soft,
respectively. This interesting phenomenon reveals some important behaviors of the penalty functions. When using the
ℓ0 penalty, the effect of an outlier is completely captured by its estimated mean-shift parameter whose magnitude is not
penalized, so once an observation is detected as an outlier, i.e., its mean-shift parameter is estimated to be nonzero, it does
not affect parameter estimation any more. However, when using ℓ1 type penalty, due to its inherit shrinkage effects on the
mean-shift parameters, the model tries to accommodate the effects of severe outliers in estimation. Even if an observation
is detected as an outlier with a nonzero mean-shift, it may still partially affects parameter estimation as the magnitude
of the mean-shift parameter is shrunk towards zero. As a consequence, the oracle estimator which has the best outlier
detection performance does not necessarily leads to the best estimation. Since the SCAD penalty can be regarded as a hybrid
between ℓ0 and ℓ1, it exhibits behaviors that are characteristics of both of ℓ0 and ℓ1. Further examination of the simulation
results reveals that SoftO (SCADO) tends to require a stronger penalty than the Soft (SCAD) estimator in order to reduce
false positives, which induces heavier shrinkage of γ , and consequently the former is distortedmore by the outliers than the
latter. The TLE method leads to satisfactory results when the trimming proportion is correctly specified. It loses efficiency
when the trimming proportion is too large and fails to be robust when the trimming proportion is too small. Our RMM
methods can achieve comparable performance to the oracle TLE that assumes the correct trimming proportion.

In case of unequal variances, the behaviors of the RMMestimators and their oracle counterparts are similar to those in the
case of equal variances. Hard still performs the best among all feasible estimators in both outlier detection and parameter
estimation. SCAD and Soft work satisfactorily when pO = 5%. However, when pO = 10%, the two methods may fail to
detect outliers and their averagemasking rates become 18.72% and 55.67%, respectively. Again, this can be explained by the
shrinkage effects on the mean-shift parameters induced by the penalty forms. Nevertheless, SCAD is affected much less and
thus performs much better in parameter estimation then Soft.

We have investigated the problem of selecting the number of mixture components using the proposed BIC criterion. In
Example 2with unequal variances and pO = 5%,we use the RMMmethod to fitmodelswith 2, 3, and 4mixture components.
The two-component model is selected 100%, 98% and 63% of the time when using Hard, SCAD and Soft, respectively, based
on 200 simulated datasets. The results are similar using Example 1 and/or pO = 10%. These results again suggest that RMM
works well with nonconvex penalty forms. In Table 5, we compare the average computation times. As expected, RMM tends
to be slightly slower than TLE andMLE, mainly because theM-step has to be solved by an iterative procedure. In general, the
computation time of RMM increases slightly as the proportion of outliers increases, and the case of unequal variances needs
slightly longer time to compute than the case of equal variances. Nevertheless, the proposed RMM method remains to be
very computationally efficient and the speed can be further improved with more careful implementation. (A user-friendly
R package for RMMwill be made available to the public.)

In summary, our RMM approach using nonconvex penalization, together with the proposed BIC criterion, achieves the
dual goal of accuracy outlier detection and robust parameter estimation. In practice, the proportion of extreme outliers is
usually very small inmixturemodel setup, andwe suggest to use either the ℓ0 or the SCADpenalty. Other nonconvex penalty
forms such as the minimax concave penalty (MCP) (Zhang, 2010) can also be used.

4. Acidity data analysis

We apply the proposed robust procedure to Acidity dataset (Crawford, 1994; Crawford et al., 1992). The observations are
the logarithms of an acidity index measured in a sample of 155 lakes in north-central Wisconsin. More details on the data
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Table 2
Simulation results for the case of equal variances with n = 200 and pO = 10%.

Hard HardO SCAD SCADO Soft SoftO TLE0.05 TLE0.10 MLE

M% 0.00 0.00 0.00 0.00 12.11 0.00 24.53 0.00 –
S% 0.32 0.04 2.89 0.04 0.80 0.04 0.19 1.19 –
JD% 100.00 100.00 100.00 100.00 72.78 100.00 2.78 100.00 –
Mis% 0.29 0.05 2.61 0.03 1.93 0.04 5.94 0.09 22.28
MeSE(π ) 0.001 0.001 0.001 0.001 0.001 0.001 0.004 0.001 0.003
MSE(π ) 0.002 0.002 0.002 0.002 0.002 0.002 0.009 0.002 0.053
MeSE(µ) 0.020 0.019 0.061 0.183 0.171 0.212 0.840 0.019 0.918
MSE(µ) 0.023 0.024 0.066 0.209 0.230 0.231 1.093 0.023 14.125
MeSE(σ ) 0.012 0.010 0.120 0.700 0.590 0.815 9.164 0.010 2.648
MSE(σ ) 0.016 0.014 0.139 0.698 0.742 0.809 6.345 0.012 12.599

Table 3
Simulation results for the case of unequal variances with n = 200 and pO = 5%.

Hard HardO SCAD SCADO Soft SoftO TLE0.05 TLE0.10 MLE

M% 0.00 0.00 0.00 0.00 0.00 0.00 0.94 0.06 –
S% 0.13 0.04 1.12 0.23 1.32 0.29 0.73 3.12 –
JD% 100.00 100.00 100.00 100.00 100.00 100.00 93.89 99.44 –
Mis% 0.51 0.44 1.48 1.35 2.24 1.87 3.88 6.22 44.82
MeSE(π ) 0.001 0.001 0.001 0.003 0.004 0.006 0.001 0.001 0.024
MSE(π ) 0.002 0.002 0.002 0.005 0.004 0.007 0.008 0.002 0.148
MeSE(µ) 0.038 0.042 0.051 0.081 0.063 0.087 0.042 0.056 77.214
MSE(µ) 0.048 0.051 0.068 0.115 0.080 0.134 3.060 0.073 141.426
MeSE(σ ) 0.022 0.019 0.149 0.730 1.121 2.133 0.026 0.112 7.711
MSE(σ ) 0.028 0.024 0.177 1.474 1.121 2.345 0.172 0.121 10.154

Table 4
Simulation results for the case of unequal variances with n = 200 and pO = 10%.

Hard HardO SCAD SCADO Soft SoftO TLE0.05 TLE0.10 MLE

M% 0.08 0.00 18.72 1.70 55.67 1.90 24.44 1.11 –
S% 0.10 0.07 2.49 0.83 0.20 0.94 0.06 0.77 –
JD% 98.33 100.00 66.67 68.67 5.56 65.33 1.11 83.89 –
Mis% 0.46 0.42 6.14 4.35 11.48 4.82 23.96 7.65 47.99
MeSE(π ) 0.001 0.002 0.002 0.019 0.030 0.023 0.024 0.002 0.112
MSE(π ) 0.002 0.003 0.008 0.019 0.032 0.025 0.066 0.049 0.168
MeSE(µ) 0.036 0.037 0.095 0.165 0.212 0.193 10.861 0.044 79.288
MSE(µ) 0.044 0.046 0.136 0.222 0.265 0.239 17.001 21.439 193.846
MeSE(σ ) 0.029 0.024 0.613 7.306 11.553 7.734 11.059 0.028 13.128
MSE(σ ) 0.035 0.033 3.416 6.088 11.396 7.482 10.261 0.917 16.203

can be found in Crawford (1994), Crawford et al. (1992), and Richardson and Green (1997). Fig. 1 shows the histogram of
the observed acidity indices.

Following Richardson and Green (1997), we fit the data by a three-component normal mixture model with equal
variances, using both the traditional MLE method and the proposed RMM approach with ℓ0 penalty. The tuning parameter
in RMM is selected by BIC. Table 6 shows the parameter estimates. In the original data, there does not appear to be outliers,
and the proposed RMM approach results in very similar parameter estimates to that of the traditional MLE. This shows that
RMM does not lead to efficiency loss when there is no outlier, and its performance is as good as that of MLE.

Following McLachlan and Peel (2000), to examine the effects of outliers, we add one outlier (y = 12) to the original data.
While RMM is not influenced by the outlier and gives similar parameter estimates to the case of no outliers,MLE leads to very
different parameter estimates. Note the first and second components are estimated to have the same mean based on MLE,
thus themodel essentially has only two components. We then add three identical outliers (y = 12) to the data. As expected,
RMM still provides similar estimates as before. However, MLE fits a new component to the outliers and gives drastically
different estimates comparing to the case of no outliers. In fact, in both cases, RMM successfully detects the added extreme
observations as outliers, so that the parameter estimation remains unaffected. This example shows that our proposed RMM
method provides a stable and robust way for fitting mixture models, especially in the presence of severe outliers.

5. Discussion

We have developed a robust mixturemodeling approach under the penalized estimation framework. Our robust method
with nonconvex penalization is capable of conducting simultaneous outlier detection and robust parameter estimation. The
method has comparable performance to TLE that uses an oracle trimming proportion. However, our method can efficiently
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Table 5
Comparison of average computation times in seconds. To make fair comparison, each reported time is the
average computation time per each tuning parameter and simulated dataset.

Example pO Hard SCAD Soft TLE0.05 TLE0.1 MLE

1 5% 0.039 0.041 0.042 0.041 0.042 0.016
1 10% 0.043 0.043 0.046 0.089 0.045 0.025
2 5% 0.081 0.128 0.166 0.083 0.076 0.008
2 10% 0.084 0.112 0.201 0.179 0.088 0.007

Table 6
Parameter estimation in Acidity data analysis.

#outlier π1 π2 π3 µ1 µ2 µ3 σ

MLE 0 0.589 0.138 0.273 4.320 5.682 6.504 0.365
1 0.327 0.324 0.349 4.455 4.455 6.448 0.687
3 0.503 0.478 0.019 5.105 5.105 12.00 1.028

Hard 0 0.588 0.157 0.255 4.333 5.720 6.545 0.336
1 0.591 0.157 0.252 4.333 5.723 6.548 0.334
3 0.597 0.157 0.246 4.333 5.729 6.553 0.331

Fig. 1. Histogram for Acidity data.

produce a solution path consisting of solutions with varying number of outliers, so that the proportion of outliers and the
accommodation of them in estimation can both be efficiently determined data adaptively.

There aremany directions for future research. It is pressing to investigate the theoretical properties of the proposed RMM
approach, e.g., the selection consistency of outlier detection. As RMM is formulated as a penalized estimation problem,
the many established results on penalized variable selection may shed light on this problem; see. e.g., Khalili and Chen
(2007) and Stadler et al. (2010). Our proposed general scaled-dependent outlier detection model shares similar idea with
the reparameterizedmodel proposed by Stadler et al. (2010), and ourmodel can bewritten as a penalizedmixture regression
problem. However, their approach for establishing the oracle properties of the penalized estimator is not directly applicable
to our problem, as in our case the design matrix associated with the mean-shift parameters becomes a fixed identity matrix
of dimension n. We have mainly focused on normal mixture model in this paper, but the method can be readily extended
to other mixture models, such as mixtures of binomial and mixtures of Poisson. It would also be interesting to extend the
method to multivariate mixture models and mixture regression models.
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Appendix

Derivation of Eq. (2.7)

The estimate of γ is obtained by maximizing
n

i=1

m
j=1

p(k+1)
ij logφ(yi − γi;µj, σ

2)−

n
i=1

1
w

Pλ(|γi|).

The problem is separable in each γi, and thus each γi can be updated by minimizing

−

m
j=1

p(k+1)
ij logφ(yi − γi;µj, σ

2)+
1
w

Pλ(|γi|).

Using the from of the normal density, the solution has the following form,

γ̂i = argmin
γi

m
j=1

pij


1
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log


σ 2
+


yi − γi − µj

2
2σ 2


+

1
w

Pλ (|γi|) .

Note that
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j=1 pij log

σ 2


does not depend on γ , and
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2
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 .

It follows that

γ̂i = argmin
γi

1
2σ 2


γi −

m
j=1

pij(yi − µj)

2
+ 1

w
Pλ (|γi|) .

Proof of Lemma 1

The penalized least squares has the following form:

g(γ ) =
1
2
(ξ − γ )2 +

σ 2

σ̂ 2
Pλ(γ ) (A.1)

where ξ = {
m

j=1 pij(yi − µj)}/(
m

j=1 pij). For simplicity, we have omitted the subscripts in γi and ξi. The first derivative of
g(γ ) with respect to γ is

g ′(γ ) = γ − ξ + sgn(γ )
σ 2

σ̂ 2
P ′λ(γ ).

We first discuss some possible solutions of (A.1) in three cases.

Case1: when |γ | ≤ λ, the problem becomes an ℓ1 penalized problem, and the solution, if feasible, is given by γ̂1 =

sgn(ξ)

|ξ | − σ 2λ/σ̂ 2


+
.

Case2: when λ < |γ | ≤ aλ, g ′′(γ ) = 1− σ 2/σ̂ 2/(a− 1). The second derivative is positive if σ 2/σ̂ 2 < a− 1. The solution,
if feasible, is given by

γ̂2 =

σ̂ 2

σ 2 (a− 1)ξ − sgn(ξ)aλ
σ̂ 2

σ 2 (a− 1)− 1
.

Case3: when |γ | > aλ, g ′′(γ ) = 1. The solution, if feasible, is given by γ̂3 = ξ .

The above three cases indicate that the solution depends on the value σ 2/σ̂ 2 and ξ . Since Eq. (A.1) is symmetric about ξ
and Θ(−ξ ; λ) = −Θ(ξ ; λ), we shall only discuss the case ξ ≥ 0.

We now derive the solution γ̂ in the following scenarios.
Scenario 1: σ 2/σ̂ 2 < a− 1.

1. When ξ > aλ, γ satisfies Case 3. Then γ̂ = γ̂3.
2. When λ+ σ 2λ/σ̂ 2 < ξ ≤ aλ, γ satisfies Case 2. Then γ̂ = γ̂2.
3. When ξ ≤ λ+ σ 2λ/σ̂ 2, γ satisfies Case 1. Then γ̂ = γ̂1.
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Scenario 2: a− 1 ≤ σ 2/σ̂ 2
≤ a+ 1. Case 2 is not feasible.

1. When ξ ≤ aλ, based on Case 1, γ̂ = γ̂1.
2. When aλ ≤ ξ ≤ λ + σ 2λ/σ̂ 2. As |γ̂1| ≤ λ and |γ̂3| ≥ aλ, they are both possible solutions. Define d = g(γ̂1) − g(γ̂3).

Then γ̂ = γ̂3 if d > 0 and γ̂ = γ̂1 if d < 0. It can be verified that d > 0 if ξ >
a+1+ σ2

σ̂2
2 λ, and d < 0 if ξ <

a+1+ σ2

σ̂2
2 λ.

When ξ =
a+1+ σ2

σ̂2
2 λ, both γ̂1 and γ̂3 are minimizers; in (2.11) we have taken γ̂ = γ̂1.

3. When ξ > λ+ σ 2λ/σ̂ 2, then ξ > aλ. Based on Case 3, γ̂ = ξ .

Scenario 3: σ 2/σ̂ 2 > a+ 1. Case 2 is not feasible.

1. When ξ > σ 2λ/σ̂ 2, it is easy to see that γ̂ = ξ .
2. When 0 ≤ ξ ≤ σ 2λ/σ̂ 2, γ̂1 = 0 and d = g(γ̂1) − g(γ̂3) = ξ 2/2 − σ 2(a + 1)λ2/(2σ̂ 2). It follows that d > 0 if

ξ >


σ 2(a+1)

σ̂ 2 λ, d < 0 if ξ <


σ 2(a+1)

σ̂ 2 λ. When ξ =


σ 2(a+1)

σ̂ 2 λ, both γ̂1 = 0 and γ̂3 = ξ are minimizers; in (2.12) we
have taken γ̂ = γ̂1 = 0.

Combining the three scenarios leads to the modified SCAD thresholding rule in Lemma 1.We note that in practice, as σ 2/σ̂ 2

is close to one, Scenarios 2 and 3 are highly unlikely to occur.
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